If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+189x+987=0
a = 6; b = 189; c = +987;
Δ = b2-4ac
Δ = 1892-4·6·987
Δ = 12033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12033}=\sqrt{9*1337}=\sqrt{9}*\sqrt{1337}=3\sqrt{1337}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(189)-3\sqrt{1337}}{2*6}=\frac{-189-3\sqrt{1337}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(189)+3\sqrt{1337}}{2*6}=\frac{-189+3\sqrt{1337}}{12} $
| (6x+7)=(7x-13) | | 5x-20=6x-21 | | (3y+6)(11)=-9 | | 36^x-1=216^2x | | b-6=22 | | 120°=x | | 15=9.8/2*t | | x2−18x+77=0 | | {3y+6}{11}=-9 | | 6x+7=7x-13 | | 34-y=27 | | 2^2v=2^v-1 | | v2+7v-8=0 | | x+2(x−4)=5x+x−10 | | 14=32+z | | (3x)(x)=2700 | | 11+2x-14=5+x | | 1/4(x-12)=-10 | | 70=2x+40 | | 4x=112=9x=72 | | x÷37=14 | | (2z^2)+z-2=3z-7 | | F^2+9f=-14 | | 3x^2-27x-15=0 | | 30-6x=90 | | 3n-12=5n+6 | | x/1.2=3.5 | | 81=100x^2 | | x+35+x+95=180 | | 70=2x×40 | | 3.5=x/1.2 | | 200+70h+30h=400 |